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The dynamics of an asymmetric annulus of vorticity in an incompressible, inviscid two- 
dimensional fluid are experimentally studied using a pure electron plasma. A strict fluid 
analogy requires that the plasma system behave like an ideal fluid in a frictionless 
cylindrical container. For certain parameters the asymmetric annulus undergoes a 
complex evolution which is quite different from that of a symmetric annulus. During 
the first ‘active’, phase the symmetries grow until the annulus collapses, leaving a large 
vortex at the device centre. In the second, ‘passive’, phase the remainder of the annulus 
winds around this central vortex into an ever tighter spiral. Finally, slow shear 
instabilities destroy the structure of the highly evolved spiral. 

1. Introduction 
Two-dimensional shear layers are important for the study of atmospheric 

phenomena (Ward 1972), oceanography (Stern 1989), and the onset of turbulence 
(Lesieur et al. 1988). The instability of symmetric circular shear layers has been studied 
theoretically by Michalke & Timme (1967) and experimentally by Weske & Rankin 
(1963). The analogous diocotron instability of hollow electron plasma columns was 
first seen by Webster (1955) and has since been extensively studied (e.g. Levy 1965; 
Rosenthal, Dimonte & Wong 1987; Driscoll et al. 1989; and Peurrung & Fajans 
1992~) .  We report here the observation of new, rapid, and dramatic dynamics in 
annular shear layers with sufficient asymmetry. Since many electron beam experiments 
use annular beams, asymmetry-driven instabilities may hinder beam propagation 
(Epstein & Poukey 1980). Asymmetry can result from misalignment of the cathode, 
magnetic field, or guide tubes or from instabilities like the resistive wall instability 
(White, Malmberg & Driscoll 1982) and the ion resonance instability (Levy, Daugherty 
& Buneman 1969; Peurrung, Notte & Fajans 1993). 

The equations governing flow in inviscid, incompressible, two-dimensional fluids are 
isomorphic to the equations which describe E x  B drift dynamics in magnetized, pure 
electron plasmas (Levy 1965; Driscoll & Fine 1990). This isomorphism maps the fluid 
vorticity and stream function to the scaled plasma density and electric potential, 
respectively. The two velocity fields correspond exactly under the isomorphism. 
Consequently, in so far as E x  B drift dynamics govern the plasma motion, the fluid 
and plasma systems evolve identically. Unlike an ordinary viscous fluid, the azimuthal 
velocity of the plasma ‘fluid’ can be non-zero at the wall. The asymmetric, annular 
plasma studied here is therefore equivalent to an asymmetric, circular shear layer in a 
low-viscosity fluid inside a frictionless circular container. 

The fluid analogy rests on two basic physical assumptions. The first is that the end- 
to-end bounce time of the plasma electrons (10-100 ns) is much shorter than all other 
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evolution timescales. Gyromotion is fast compared to the bounce motion, and so plays 
no direct role in the dynamics of a strongly magnetized plasma. The rapid electron 
bounce motion causes the plasma to act as if it is ‘averaged’ along the axial dimension, 
rendering it effectively two-dimensional. The second assumption is that only E x  B 
drift dynamics govern the two-dimensional motion of the plasma. The degree to which 
this assumption is true depends on the rate of plasma transport arising from other 
sources. Collisional transport can surely be neglected since both the electron-electron 
collision time (1-10 ms) and the electron-neutral gas molecule collision time 
(> 100 ms) are substantially longer than the timescales of interest here (20 ps). Energy- 
dependent drifts arising in the plasma end region may be the dominant type of 
transport which breaks the fluid analogy (Peurrung 1992), but this transport process 
is also slow (roughly 1 cm in 100 ps) and affects only scale sizes of much less than a 
Debye length (6  0.1 cm). 

For the conditions present in this experiment, the fluid analogy largely holds and 
therefore the plasma system behaves almost exactly like a two-dimensional, inviscid 
fluid. For example, two like-signed vortices have been observed to rotate 10000 times 
around their common centre before effects corresponding to non-inviscid behaviour 
become important (Fine et al. 1991). The slow transport mechanisms that do 
eventually break the fluid analogy are not strictly equivalent to viscosity. These 
alternative transport mechanisms cause spreading or smearing of the vorticity 
distribution, and result in phenomena like the gradual expansion of a single vortex. 
However, unlike in a normal fluid, charge conservation requires that the circulation 
remains constant during this process. (After a very long time charge hits the outer wall 
and circulation is lost.) Because the plasma does not exhibit classic ‘viscosity’, it is 
impossible to calculate an effective Reynolds number for the system. 

Our motivation for performing fluid experiments in an electron plasma system is 
twofold. First, due to the exceptionally inviscid nature of the plasma, we can follow the 
dynamical evolution to much later times than in conventional fluid experiments 
(Weske & Rankin 1963). Second, we can exploit the mapping between fluid vorticity 
and plasma density. Although fluid vorticity is the fundamental quantity in fluid 
dynamics (Lin 1966; B a h t  & Wallace 1989), experiments are often hampered by the 
fact that fluid velocity, not vorticity, is the experimental quantity most readily 
controlled and measured. In plasma experiments, however, density (vorticity) is the 
quantity most easily manipulated and measured. Our ability to both extensively 
control the plasma’s initial shape and clearly image its evolution make possible the 
study presented here. 

Figure 1 shows the experimental geometry. The electron plasma is trapped inside a 
series of individually biased conducting cylinders. The large negative voltages applied 
to the two end cylinders and the strong axial magnetic field guarantee long time 
confinement of the plasma (lo6 vortex rotation periods is typical). Grounding an end 
cylinder allows the plasma to stream out along the magnetic field lines and strike a 
phosphor screen, producing a visible image (Peurrung & Fajans 1993 b). Although 
imaging destroys the plasma, time-sequenced images can be produced because the 
plasmas are very reproducible. The time required for imaging is much shorter than the 
time over which dynamics occur in these systems. To obtain the asymmetric annular 
plasmas used in this experiment, we form a quiescent electron plasma and then move 
it a known distance off centre using feedback from a wall probe (White et al. 1982; and 
Malmberg el al. 1988). We then eject the central plasma core by briefly reducing the 
voltage on one end cylinder (Driscoll 1990). Plasmas in this experiment have a density 
of approximately 1 .O x lo* ~ m - ~ ,  a temperature of approximately 2 eV, and dimensions 
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FIGURE 1. Confinement geometry. 

of approximately 1 cm radially and approximately 3 cm in length. The outer wall of the 
confinement region has a radius of R, = 1.905 cm. 

2. The active phase 
Figure 2 contains eight images showing the evolution of an asymmetric annulus. The 

initial state of the system consists of an offcentre annulus (R,,, = 0.1 R,) with an outer 
radius of 0.66RW and a non-concentric inner radius of 0.43RW. Because the two radii 
are non-concentric, the annulus thickness depends on the azimuthal angle, 8 ;  the side 
nearest to the outer wall is approximately 20 % thicker than the side nearest the device 
centre. Figure 2(a) shows the system shortly after the hollowing is complete. Although 
analysis of the subsequent dynamics can be described from either the fluid or plasma 
viewpoint, we prefer to use the fluid viewpoint, but will occasionally put the 
corresponding plasma quantities in parentheses. 

The fluid velocity (plasma electric field) is a minimum at the point where the annulus 
is both thinnest and farthest from the wall. Not only is the shear layer weakest here, 
but also the image vorticity (plasma image charge) exerts the least influence at this 
point due to the larger distance to the wall, Bunching and thinning develop on either 
side of this flow velocity minimum (figure 2b). This effect has been predicted 
numerically by Epstein & Poukey (1980) for the early development of an offcentre, 
circular shear layer. In addition, Poukey & Freeman (1981) numerically studied the 
initial stages of asymmetry driven beam breakup. The ensuing collapse of one side of 
the annulus is best understood in terms of vortex dynamics. The thick and thin regions 
in figure 2(b)  behave like two vortices with opposite signs of vorticity superimposed on 
a uniform-thickness annulus. Two such vortices travel in a direction perpendicular to 
the line connecting their centres, in this case toward the centre of the device. 

This collapse increases the original asymmetry, providing positive feedback which 
allows the dynamics to proceed very rapidly. The asymmetry and distortion grow until 
the annulus has completely collapsed, as shown in figure 2(c). Dramatic changes have 
occurred after only 5 ps. Although direct comparison is difficult due to the different 
nature of the two processes, the Kelvin-Helmholtz instability in a symmetric annulus 
would require roughly five times as much time to produce the same amount of radial 
transport. Interestingly, the symmetric annulus of vorticity is known to be stable with 
respect to small-amplitude perturbations of the type that are applied here as initial 
asymmetries (Michalke & Timme 1967; Busse 1968; Rotunno 1978; and Peurrung & 
Fajans 1993a). Thus, the ring collapse appears to be a nonlinear instability which 
affects rings only when the amount of asymmetry is sufficient to initiate nonlinear 
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FIGURE 2. Eight images showing plasma density (fluid vorticity) taken at times (a) 0.2, (b) 2.0, (c) 4.1, 
( d )  8.0, (e) 11.9, (f) 15.2, (g) 18.8, and ( h )  300 ps. The outer circle indicates the outer conducting wall. 
The unit of density is lo7 cm-3. 
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FIGURE 3. Low-contrast version of figure 2(e) .  All regions with a density greater than 3.3 x lo6 ~ m - ~  
are dark. The thin strand which remains to preserve the original circular topology is clearly visible. 

evolution. Experimentally, we find that when the initial asymmetry is insufficient, the 
system evolves via a Kelvin-Helmholtz instability. 

3. The passive phase 
After the collapse, the innermost ‘end’ of the annulus functions as a substantial 

central vortex. At this time, radial shear causes the remainder of the annulus to begin 
to wind around this vortex (figure 2 4 .  The low-contrast image in figure 3 reveals the 
thin filament that preserves the original circular topology. No amount of stretching is 
able to destroy the continuity of this connecting strand. The apparent topological 
changes visible in figure 2 are an artifact of the limited spatial resolution of our optical 
imaging system. As stretching continues, the vorticity value in the strand appears to 
decline as if dissipation were occurring. In fact, we believe this is simply the inevitable 
result of viewing the increasingly thin strand. By figure 2(d), the strand’s thickness has 
decreased to the known length over which our imaging system experiences ‘blurring’. 

Although this winding causes rapid mixing, the system retains a high degree of order 
as winding continues (figure 2e, f ) .  This is due largely to the fact that adverse shear 
from the central vortex slows or suppresses the Kelvin-Helmholtz instability in the 
spiral arm. This suppression of instability supports the suggestion that in two- 
dimensional turbulence the small scales behave ‘ quasi-passively ’ under the influence of 
large-scale dynamics (see e.g. Batchelor 1969; Brachet et al. 1988; Dritschel 1989; 
Dritschel et al. 1991; Matthaeus et al. 1991; Waugh & Dritschel 1991). As shown in 
figure 2 (g),  growth of a Kelvin-Helmholtz instability eventually disrupts the spiral, 
usually on the thickest, outermost turn. The observed wavelength of this later growth 
is roughly four times the strip thickness, but half of the value expected for a strip 
without adverse shear. This wavelength is, however, close to the value predicted by 
Dritschel(l989) for a strip with a Gaussian profile subjected to a dimensionless adverse 
shear of A = 0.25. A model to be described later for the spiral motion predicts that the 
adverse shear in the outer region should have a value of 2G25 %. 

As the Kelvin-Helmholtz instability grows to large amplitude, the conducting wall 
may absorb a significant amount of charge, thus causing the first loss of circulation for 
the system as a whole. This ‘annihilation’ of vorticity by the otherwise frictionless 
experimental boundary constitutes a violation of the fluid analogy; therefore, the 
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FIGURE 4. Number of turns in the winding spiral us. time. The winding number is the angle between 
the beginning and end of the spiral, measured in revolutions. The line is a least-squares fit to the 
central portion of the data. 

correspondence for further dynamics may be imperfect. Figure 2(h)  shows the final 
state of the system: a large, diffuse vortex near the centre of the device with a ring of 
vorticity near the wall. Residual shear continues to dampen any azimuthal fluctuations 
in vorticity. Radially, the system is now completely stable. 

Figure 4 shows the development of this winding process. After the early annular 
collapse, the number of turns in the spiral increases linearly with time, providing 
evidence for the passive behaviour of the outer fluid. Difficulties in resolving the inner 
turns of the tightly wound spiral finally limit the observable increase in winding 
number. 

Further insight into the development of the spiral can be gained from an 
approximate physical model for the passive winding process. We assume that the spiral 
starts as a radial strip of vorticity which then convects passively in the flow field created 
by its own azimuthally averaged vorticity distribution. Since this model predicts that 
fluid vorticity is proportional to l l r ,  the flow velocity is independent of radius. The 
steady winding recorded in figure 4 is trivially predicted by this model, and the inner 
turns of the spiral are expected to be the thinnest and most tightly wound. The spiral 
should have the mathematical form O(r) = v , t / r ,  where vo is the uniform azimuthal 
flow speed. We avoid divergence at r = 0 by postulating the existence of a central core 
of radius rev. This core corresponds to the central vortex visible in figure 2(c) .  With this 
modification, the model predicts that 

is the dimensionless adverse shear for all radii r > rev. As discussed above, this adverse 
shear suppresses instability in the spiral’s vorticity strips. The applicability of this 
model may also break down near the wall where the image vorticity plays an important 
role in the dynamics and also in the region of the central vortex where the vorticity is 
actually constant. 

Since the experimental initial state is somewhat different from that assumed by the 
model, we test the success of this passive flow model by measuring the changes in the 
spiral shape. Figure 5 shows the experimentally observed angular displacement of 
various points on the spiral for three different time periods. Since the data are plotted 

A = rcv /r  (1) 
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FIGURE 5 .  Angular displacement us. l/radius for three different time periods: -.-, Ar = 4.2 ps; 
---,  At = 8.1 ps; -A-, At = 12.0 ps. The lines in this graph are the best straight line fits to the 
data. 

against l/r, straight lines should be observed if the spiral winding is well described by 
the model. The reasonably good, straight line fits to the data indicate that the model 
does do a fair job of describing the actual winding process. The motion of any point 
on the spiral is described by the relation dO/dt w 14/r. where time is measured in 
microseconds, angle in degrees, and radius in centimetres. The oscillations in the data 
and the fact that the fitted lines do not pass exactly through the origin probably reflect 
local dynamics occurring within the spiral or errors in the assumed l / r  azimuthally 
averaged vorticity profile. 

4. Conclusion 
Sufficiently asymmetric annular shear layers undergo a complex evolution which is 

different from and more rapid than the dynamics of a symmetric annulus. After 
angular bunching and thinning break the remaining circular symmetry, the annulus 
deforms and collapses, leading to the development of a vortex at the centre of the 
device. The remaining vorticity then passively winds around this central vortex in a 
manner which is consistent with a mean field approximation for the flow. The inviscid 
nature of the dynamics leads to the formation of highly evolved spiral shapes. 
Although suppressed, the Kelvin-Helmholtz instability grows in the outer region, 
disrupting further winding. 

This work was supported by the ONR and the NSF. 
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